S UBI ECT: $\mathcal{M A T \mathcal { H E M A T } I C S}$
$\mathcal{M A X}$. $\mathcal{M A R K S}: 80$
CLASS : X

DURATION : 3 HRS

General Instruction:

(i) All the questions are compulsory.
(ii) The question paper consists of 40 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .
(iii) Section \mathbf{A} comprises of 20 questions of $\mathbf{1}$ mark each. Section \mathbf{B} comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of $\mathbf{3}$ marks each. Section \mathbf{D} comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

SECTION - A
 Questions 1 to 20 carry 1 mark each.

1. The HCF of two numbers is 2 and their LCM is 27 . The product of the two numbers is :
(a) 54
(b) 29
(c) 13.5
(d) None of these

Ans: (a) 54
2. For some integer m, every even integer is of the form :
(a) m
(b) $m+1$
(c) 2 m
(d) $2 m+1$

Ans: (c) 2m
3. A quadratic polynomial, whose zeroes are -3 and 4 , is :
(a) $x^{2}-x+12$
(b) $x^{2}+x+12$
(c) $x^{2}-x-12$
(d) $2 x^{2}+2 x-9$

Ans: (c) $\mathrm{x}^{2}-\mathrm{x}-12$
4. For some integers p and 5 , there exist unique integers q and r such that $p=5 q+r$. Possible values of r are
(a) 0 or 1
(b) 0,1 or 2
(c) $0,1,2$ or 3
(d) $0,1,2,3$ or 4

Ans: (d) 0, 1, 2, 3 or 4
5. If α and β are zeroes of the polynomial $x^{2}+5 x+8$, then $\alpha+\beta=$
(a) 8
(b) -8
(c) 5
(d) -5

Ans: (d) -5
6. Midpoint of a line segment $A B$ where $A(2,5)$ and $B(-5,5)$ is at:
(a) $(-1,5)$
(b) $(1,5)$
(c) $(-1.5,-5)$
(d) $(-1.5,5)$

Ans: (d) (-1.5, 5)
7. The distance of the point $\mathrm{P}(-3,-4)$ from the origin is
(a) 12
(b) 5
(c) 7
(d) none of these

Ans: (b) 5
8. The probability of an event that is certain to happen is
(a) -1
(b) 1
(c) 0
(d) none of these

Ans: (b) 1
9. The angle between tangent at a point on a circle and the radius through the point of contact is :
(a) 30°
(b) 45°
(c) 60°
(d) 90°

Ans: (d) 90°
10. If $\sum f_{i}=15, \sum f_{i} x_{i}=3 p+36$ and mean $=3$ then
(a) $\mathrm{p}=3$
(b) $\mathrm{p}=5$
(c) $\mathrm{p}=6$
(d) $p=9$

Ans: (a) $\mathbf{p}=3$
11. The distance between the points $(0,5)$ and $(-5,0)$ is \qquad
Ans: $5 \sqrt{2}$
12. If $\sin \mathrm{A}=\frac{3}{4}$, the value of $\sec \mathrm{A}$ is \qquad
Ans: $\frac{\sqrt{7}}{4}$
13. The value of $2 \tan ^{2} 60^{\circ}+\cos ^{2} 60^{\circ}-\sin ^{2} 30^{\circ}$ is \qquad
Ans: 6
14. The value of k so that the system of equations has no solution: $k x+3 y=1,12 x+k y=2$ is
\qquad
Ans: $k=6$

OR

If one root of the quadratic equation $6 x^{2}-x-k=0$ is $2 / 3$, then the value of k is \qquad
Ans: $\mathrm{k}=2$
15. In below figure, $D E \| B C$, the value of $A B$ is \qquad
Ans: $\mathrm{AD}=2.4 \mathrm{~cm} \mathrm{AB}=\mathrm{AD}+\mathrm{DB}=2.4+7.2=9.6 \mathrm{~cm}$

16. A lot of 40 bulbs contain 12 defective ones. One bulb is drawn at random from the lot. What is the probability that this bulb is good?
Ans: 28/40 = 7/10
17. Find the value of $19 \operatorname{cosec}^{2} \mathrm{~A}-19 \cot ^{2} \mathrm{~A}$.

Ans: 19

OR

Find the value of $\sin 35^{\circ} \cos 55^{\circ}+\cos 35^{\circ} \sin 55^{\circ}$
Ans: 1
18. A ladder 13 m long reaches a window 12 m above the ground. Find the distance of the foot of the ladder from base of the wall.
Ans: 5 m
19. A chord of a circle of radius 7 cm subtends a right angle at the centre. What is the area of the minor sector?
Ans: $\mathbf{3 8 . 5} \mathbf{c m}^{2}$.
20. For what value of k will $k+9,2 k-1$ and $2 k+7$ are the consecutive terms of an AP?

Ans: $\mathrm{k}=18$

SECTION - B

Questions 21 to 26 carry 2 marks each.
21. A lot consists of 144 ball pens of which 20 are defective and the others are good. Nuri will buy a pen if it is good, but will not buy if it is defective. The shopkeeper draws one pen at random and gives it to her. What is the probability that (i) She will buy it? (ii) She will not buy it?
Ans: NCERT Exercise 15.1 Q21

OR

One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting (i) a face card (ii) the jack of hearts
Ans: NCERT Exercise 15.1 Q14
22. A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears (i) a two-digit number (ii) a perfect square number.
Ans: NCERT Exercise 15.1 Q18
23. If $\sin 3 A=\cos \left(A-26^{\circ}\right)$, where $3 A$ is an acute angle, find the value of A.

Ans: NCERT Trigonometry Example-10 p-189
OR
In $\triangle \mathrm{ABC}$, right-angled at $\mathrm{B}, \mathrm{AB}=5 \mathrm{~cm}$ and $\angle \mathrm{ACB}=30^{\circ}$. Determine the lengths of the sides $B C$ and $A C$.
Ans: NCERT Trigonometry Example-6 p-185
24. Divide $3 x^{3}+x^{2}+2 x+5$ by $1+2 x+x^{2}$ and find the quotient and remainder

Ans: NCERT Polynomials Example 7 p-34
25. The length of the minute hand of a clock is 14 cm . Find the area swept by the minute hand in 5 minutes.
Ans: NCERT Exercise 12.2 Q3 p-230
26. A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$

Ans: NCERT Exercise 10.2 Q8 p-214

SECTION - C

Questions 13 to 22 carry 3 marks each.
27. Prove that $\sqrt{2}$ is an irrational number.

Ans: Proof of Theorem 1.4 p-12
OR
Find the HCF and LCM of 96 and 404 by the prime factorisation method and verify that LCM \times $\mathrm{HCF}=$ product of the two numbers
Ans: NCERT Real Numbers Example 7 p-10
28. Two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}$.
Ans: NCERT Circles Example-2 p-212
29. From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in below figure. Find the area of the remaining portion of the square.
Ans: NCERT Exercise 12.3 Q5 p-235

30. Find the zeroes of the quadratic polynomial $3 x^{2}-x-4$ and verify the relationship between the zeroes and the coefficients.
Ans: NCERT Exercise 2.2 Q1(vi) p-33
31. If A, B and C are interior angles of a triangle ABC , then show that $\tan \left(\frac{A+C}{2}\right)=\cot \frac{B}{2}$

OR
Prove that $\sec \mathrm{A}(1-\sin \mathrm{A})(\sec \mathrm{A}+\tan \mathrm{A})=1$.
Ans: NCERT Trigonometry Example-13 p-192
32. A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.
Ans: NCERT Exercise 3.4 Q2(v) p-57
33. Draw a triangle ABC with side $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}, \angle \mathrm{A}=105^{\circ}$. Then, construct a triangle whose sides are $\frac{3}{5}$ times the corresponding sides of $\triangle \mathrm{ABC}$.

OR

Draw a line segment of length 9.6 cm and divide it in the ratio $3: 4$.
34. Four friends Aditya(A), Bunny(B), Chotu(C) and Dhanush(D) are sitting in a park and they are talking to each other using walkie-talkie. Aditya told his friends that their positions will form a quadrilateral in a park. All friends also agree with Aditya. They got the coordinates of their positions as $\mathrm{A}(-4,-2), \mathrm{B}(-3,-5), \mathrm{C}(3,-2)$ and $\mathrm{D}(2,3)$ by taking the origin in the middle of the park. After obtaining the coordinates they have calculate the area of the quadrilateral formed. How much area they calculated?
Ans: NCERT Exercise 7.3 Q4 p-170

SECTION - D

Questions 23 to 30 carry 4 marks each.
35. Two poles of equal heights are standing opposite each other on either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of the poles and the distances of the point from the poles.

Ans: NCERT Exercise 9.1 Q10 p-204

36. An express train takes 1 hour less than a passenger train to travel 132 km between Mysore and Bangalore (without taking into consideration the time they stop at intermediate stations). If the average speed of the express train is $11 \mathrm{~km} / \mathrm{h}$ more than that of the passenger train, find the average speed of the two trains.
Ans: NCERT Exercise 4.3 Q10 p-88
37. Prove that "The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides."

OR

State and prove Pythagoras theorem.
38. A sum of Rs 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is Rs 20 less than its preceding prize, find the value of each of the prizes.

Ans: NCERT Exercise 5.3 Q16

OR

The first and the last terms of an AP are 17 and 350 respectively. If the common difference is 9 , how many terms are there and what is their sum?
Ans: NCERT Exercise 5.3 Q6
39. A tent is in the shape of a cylinder surmounted by a conical top. If the height and diameter of the cylindrical part are 2.1 m and 4 m respectively, and the slant height of the top is 2.8 m , find the area of the canvas used for making the tent. Also, find the cost of the canvas of the tent at the rate of Rs 500 per m^{2}. (Note that the base of the tent will not be covered with canvas.)

NCERT Exercise 13.1 Q7 p-245

OR

A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 4 m to form an embankment. Find the height of the embankment. NCERT Exercise 13.3 Q4 p-251
40. The table given below shows the frequency distribution of the cores obtained by 200 candidates in a BCA examination.

Score	$200-250$	$250-300$	$300-350$	$350-400$	$400-450$	$450-500$	$500-550$	$550-600$
No. of students	30	15	45	20	25	40	10	15

Draw less than type ogive and hence find median from the graph.
Ans: Less than cumulative frequency table:

Score	No. of students
Less than 250	30
Less than 300	45
Less than 350	90
Less than 400	110
Less than 450	135
Less than 500	175
Less than 550	185
Less than 600	200

Less than ogive curve and Median from the graph:

