CLASS X (2019-20)
 MATHEMATICS STANDARD(041)
 SAMPLE PAPER-6

Time : 3 Hours
Maximum Marks : 80
General Instructions :
(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. Which of the following will have a terminating decimal expansion?
[1]
(a) $\frac{77}{210}$
(b) $\frac{23}{30}$
(c) $\frac{125}{441}$
(d) $\frac{23}{8}$

Ans: (d) $\frac{23}{8}$
For terminating decimal expansion, denominator must have only 2 or only 5 or 2 and 5 as factor.
Here, $\quad \frac{23}{8}=\frac{23}{(2)^{3}}$
(only 2 as factor of denominator so terminating)
2. The value of the polynomial $\mathrm{x}^{8}-\mathrm{x}^{5}+\mathrm{x}^{2}-\mathrm{x}+1$ is [1]
(a) positive for all the real numbers
(b) negative for all the real numbers
(c) 0
(d) depends on value of x

Ans: (a) positive for all the real numbers
Let $\quad \mathrm{f}(\mathrm{x})=\mathrm{x}^{8}-\mathrm{x}^{5}+\mathrm{x}^{2}-\mathrm{x}+1$
For $\quad \mathrm{x}=1$ or 0

$$
\mathrm{f}(\mathrm{x})=1>0
$$

For $\quad \mathrm{x}<0$
each term of $f(x)$ is Positive and so first $f(x)>0$.
Hence, $f(x)$ is Positive for all real x.
3. A motor boat takes 2 hours to travel a distance 9 km . down the current and it takes 6 hours to travel the same distance against the current. The speed of the boat in still water and that of the current (in km/ hour) respectively are
[1]
(a) $3,1.5$
(b) 3,2
(c) $3.5,2.5$
(d) 3,1

Ans: (a) 3, 1.5

$$
\text { Down-rate }=9 \div 2=4.5 \mathrm{~km} / \mathrm{hr}
$$

$$
\text { Uprate }=9 \div 6=1.5 \mathrm{~km} / \mathrm{hr}
$$

Speed of the boat $=(4.5+1.5) \div 2=3 \mathrm{~km} / \mathrm{hr}$
Speed of the current $=(4.5-1.5) \div 2=1.5 \mathrm{~km} / \mathrm{hr}$
4. One of the two students, while solving a quadratic equation in x, copied the constant term incorrectly and got the roots 3 and 2 . The other copied the constant term and coefficient of x^{2} correctly as -6 and 1 respectively. The correct roots are
(a) $3,-2$
(b) $-3,2$
(c) $-6,-1$
(d) $6,-1$

Ans : (d) 6, - 1
Let α, β be the roots of the equation.
Then,

$$
\alpha+\beta=5
$$

and

$$
\alpha \beta=-6 .
$$

So, the equation is

$$
x^{2}-5 x-6=0
$$

The roots of the equation are 6 and -1 .
5. Five distinct positive integers are in a arithmetic progression with a positive common difference. If their sum is 10020 , then the smallest possible value of the last term is
(a) 2002
(b) 2004
(c) 2006
(d) 2007

Ans: (c) 2006
Let the five integers be $a-2 d, a-d, a, a+d, a+2 d$. Then, we have,

$$
\begin{aligned}
(a-2 d)+(a-d)+a & +(a+d)+(a+2 d) \\
& =10020 \\
5 a & =10020 \Rightarrow a=2004
\end{aligned}
$$

Now, as smallest possible value of d is 1 .
Hence, the smallest possible value of $a+2 d$ is $2004+2$ $=2006$
6. If $x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$ and $x \sin \theta=y \cos \theta$, than $x^{2}+y^{2}$ is equal to
(a) 0
(b) $1 / 2$
(c) 1
(d) $3 / 2$

Ans: (c) 1
We have, $\quad x \sin ^{3} \theta+y \cos ^{3} \theta=\sin \theta \cos \theta$

$$
\begin{aligned}
(x \sin \theta) \sin ^{2} \theta+(y \cos \theta) \cos ^{2} \theta & =\sin \theta \cos \theta \\
x \sin \theta\left(\sin ^{2} \theta\right)+(x \sin \theta) \cos ^{2} \theta & =\sin \theta \cos \theta \\
x \sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\sin \theta \cos \theta \\
x \sin \theta & =\sin \theta \cos \theta \Rightarrow x=\cos \theta \\
\text { Now, } \quad x \sin \theta & =y \cos \theta \\
\cos \theta \sin \theta & =y \cos \theta \\
y & =\sin \theta \\
\text { Hence, } \quad x^{2}+y^{2} & =\cos ^{2} \theta+\sin ^{2} \theta=1
\end{aligned}
$$

$$
x^{2}+y^{2}=\cos ^{2} \theta+\sin ^{2} \theta=1
$$

7. If the area of a semi-circular field is 15400 sq m , then perimeter of the field is:
(a) $160 \sqrt{2} \mathrm{~m}$
(b) $260 \sqrt{2} \mathrm{~m}$
(c) $360 \sqrt{2} \mathrm{~m}$
(d) $460 \sqrt{2} \mathrm{~m}$

Ans: (c) $360 \sqrt{2} \mathrm{~m}$
Let the radius of the field be r.
Then, $\quad \frac{\pi r^{2}}{2}=15400$

$$
\begin{aligned}
\frac{1}{2} \times \frac{22}{7} \times r^{2} & =15400 \\
r^{2} & =15400 \times 2 \times \frac{7}{22} \\
& =9800 \\
r & =70 \sqrt{2} \mathrm{~m}
\end{aligned}
$$

Thus, perimeter of the field

$$
\begin{aligned}
& =\pi r+2 r \\
& =\frac{22}{7} \times 70 \sqrt{2}+2 \times 70 \times \sqrt{2} \\
& =220 \sqrt{2}+140 \sqrt{2} \\
& =\sqrt{2}(220+140) \\
& =360 \sqrt{2} \mathrm{~m}
\end{aligned}
$$

8. If the perimeter of one face of a cube is 20 cm , then its surface area is
[1]
(a) $120 \mathrm{~cm}^{2}$
(b) $150 \mathrm{~cm}^{2}$
(c) $125 \mathrm{~cm}^{2}$
(d) $400 \mathrm{~cm}^{2}$

Ans: (b) $150 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \text { Edge of cube }=\frac{20}{4} \mathrm{~cm}=5 \mathrm{~cm} \\
& \text { Surface area }=6 \times 5^{2} \mathrm{~cm}^{2}=150 \mathrm{~cm}^{2}
\end{aligned}
$$

9. The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observation of the set is increased by 2 , then the median of the new set [1]
(a) Is increased by 2
(b) Is decreased by 2
(c) Is two times the original median
(d) Remains the same as that of the original set

Ans : (d) Remains the same as that of the original set
Since,

$$
\mathrm{n}=9
$$

then, median term $=\left(\frac{9+1}{2}\right)^{\text {th }}=5^{\text {th }}$ item.
Now, last four observations are increased by 2 .
The median is $5^{\text {th }}$ observation, which is remaining unchanged.
There will be no change in median.
10. Two coins are tossed simultaneously. The probability
of getting at most one head is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{3}{4}$
(d) 1

Ans: (c) $\frac{3}{4}$
Total outcomes $=\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}$
Favourable outcomes $=\mathrm{HT}, \mathrm{TH}, \mathrm{TT}$
$P($ at most one head $)=\frac{3}{4}$
(Q.11-Q.15) Fill in the blanks.
11. An algorithm which is used to find HCF of two positive numbers is \qquad ..
Ans : Euclid's division algorithm
12. The fourth vertex D of a parallelogram $A B C D$ whose three vertices are $A(-2,5), B(6,9)$ and $C(8,5)$ is
\qquad
Ans: $(0,1)$

or

$(5,-2)(6,4)$ and $(7,-2)$ are the vertices of an \qquad triangle.
Ans: Isosceles
13. In $\triangle P Q R$, right-angled at $Q, P R+Q R=25 \mathrm{~cm}$ and $P Q=5 \mathrm{~cm}$. The value of $\tan P$ is \qquad
Ans: $12 / 5$
14. The region enclosed by an arc and a chord is called the \qquad of the circle.
Ans: Segment
15. The total surface area of a solid hemisphere having radius r is \qquad
Ans: $3 \pi r^{2}$

(Q.16-Q.20) Answer the following

16. If ratio of corresponding sides of two similar triangles is $5: 6$, then find ratio of their areas.
Ans:
Let the triangles be $\triangle A B C$ and $\triangle D E F$

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=\left(\frac{5}{6}\right)^{2}=\frac{25}{36}
$$

25:36
17. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of larger circle (in cm) which touches the smaller circle.
Ans :
As per the given question we draw the figure as below.

Here $A B$ is the chord of large circle which touch the smaller circle at point C. We can see easily that $\triangle A O C$ is right angled triangle.
Here, $A O=5 \mathrm{~cm}, O C=3 \mathrm{~cm}$

$$
\begin{aligned}
A C & =\sqrt{A O^{2}-O C^{2}} \\
& =\sqrt{5^{2}-3^{2}} \\
& =\sqrt{25-9}=\sqrt{16}=4 \mathrm{~cm}
\end{aligned}
$$

Length of chord, $A B=8 \mathrm{~cm}$.
18. A pole casts a shadow of length $2 \sqrt{3} \mathrm{~m}$ on the ground, when the Sun's elevation is 60°. Find the height of the pole.

Ans :

Let the height of pole be h. As per given in question we have drawn figure below.

$$
\begin{aligned}
\frac{h}{2 \sqrt{3}} & =\tan 60^{\circ} \\
h & =2 \sqrt{3} \tan 60^{\circ} \\
& =2 \sqrt{3} \times \sqrt{3}=6 \mathrm{~m}
\end{aligned}
$$

or
An observer 1.5 m tall is 28.5 m away from a tower 30 m high. Find the angle of elevation of the top of the tower from his eye.
Ans :
As per given in question we have drawn figure below.

Here $A E=1.5 \mathrm{~m}$ is height of observer and $B D=30$ m is tower.
Now

$$
B C=30-1.5=28.5 \mathrm{~m}
$$

In $\triangle B A C$,

$$
\begin{aligned}
\tan \theta & =\frac{B C}{A C} \\
\tan \theta & =\frac{28.5}{28.5}=1=\tan 45^{\circ}
\end{aligned}
$$

$$
\theta=45^{\circ}
$$

Hence angle of elevation is 45°
19. A line Segment $A B$ is divided at point P such that $\frac{P B}{A B}=\frac{3}{7}$, then find the ratio $A P: P B$.
Ans :
Here,

$$
A B=7, P B=3
$$

$\therefore \quad A P=A B-P B=7-3=4$
$\therefore \quad A P: P B=4: 3$
20. If the radius of the base of a right circular cylinder is halved, keeping the height same, find the ratio of the volume of the reduced cylinder to that of original cylinder.
Ans :

$$
\begin{aligned}
\frac{\text { Volume of reduced cylinder }}{\text { Volume of original cylinder }} & =\frac{\pi \times\left(\frac{r}{2}\right)^{2} h}{\pi r^{2} h} \\
& =\frac{1}{4}=1: 4
\end{aligned}
$$

Section B

21. For what value of ' k ', the system of equations $k x+3 y=1,12 x+k y=2$ has no solution.
Ans:
The given equations can be written as
$k x+3 y-1=0$ and $12 x+k y-2=0$
Here,

$$
\begin{aligned}
& a_{1}=k, b_{1}=3, c_{1}=-1 \\
& a_{2}=12, b_{2}=k, c_{2}=-2
\end{aligned}
$$

and
The equation for no solution if

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}
$$

$$
\text { or, } \quad \frac{k}{12}=\frac{3}{k} \neq \frac{-1}{-2}
$$

From $\frac{k}{12}=\frac{3}{k}$ we have $k^{2}=36 \Rightarrow k \pm 6$
From $\frac{3}{k} \neq \frac{-1}{-2}$ we have $k \neq 6$
Thus $k=-6$
22. Prove that the point $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a right angled isosceles triangle.
Ans :
We have $A(3,0), B(6,4)$ and $C(-1,3)$
Now $\quad A B^{2}=(3-6)^{2}+(0-4)^{2}$

$$
=9+16=25
$$

$$
B C^{2}=(6+1)^{2}+(4-3)^{2}
$$

$$
=49+1=50
$$

$$
C A^{2}=(-1-3)^{2}+(3-0)^{2}
$$

$$
=16+9=25
$$

$$
A B^{2}=C A^{2} \text { or, } A B=C A
$$

Hence triangle is isosceles.

Also, $\quad 25+25=50$
or, $\quad A B^{2}+C A^{2}=B C^{2}$
Since pythagoras theorem is verified, therefore triangle is a right angled triangle.
23. In the given figure, $D E \| B C$. If $A D=1.5 \mathrm{~cm}$
$B D=2 A D$, then find $\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\text { trapezium } B C E D)}$

Ans :

We have $\quad A D=1.5 \mathrm{~cm}, B D=3$
and $\quad A B=A D+B D=1.5+3.0=4.5 \mathrm{~cm}$
In triangle $A D E$ and $A B C, \angle A$ is common and $D E \| B C$
Thus

$$
\begin{aligned}
& \angle A D E=\angle A B C \\
& \angle A E D=\angle A C B
\end{aligned}
$$

(corresponding angles)
By $A A$ similarity we have

$$
\triangle A D E \sim \triangle A B C
$$

Now $\quad \frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)}=\frac{A D^{2}}{A B^{2}}=\frac{(1.5)^{2}}{(4.5)^{2}}=\frac{1}{9}$

$$
\begin{gathered}
\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\triangle A B C)-\operatorname{ar}(\triangle A D E)} \\
=\frac{1}{9-1} \\
\frac{\operatorname{ar}(\triangle A D E)}{\operatorname{ar}(\operatorname{trapezium} B C E D)} \\
=\frac{1}{8} \\
\text { or }
\end{gathered}
$$

In an equilateral triangle of side 24 cm , find the length of the altitude.

Ans :

Let $\triangle A B C$ be an equilateral triangle of side 24 cm and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

Now
$B D=\frac{B C}{2}=\frac{24}{2}=12 \mathrm{~cm}$
$A B=24 \mathrm{~cm}$
$A D=\sqrt{A B^{2}-B D^{2}}$
$=\sqrt{(24)^{2}-(12)^{2}}$
$=\sqrt{576-144}$
$=\sqrt{432}=12 \sqrt{3}$
Thus $A D=12 \sqrt{3} \mathrm{~cm}$
\therefore The length of the altitude is $12 \sqrt{3} \mathrm{~cm}$.
24. The radius and height of a wax made cylinder are 6 cm and 12 cm respectively. A cone of same base radius and height has been made from this cylinder by cutting out.
(a) Find the volume of cone
(b) How many candles with 1 cm radius and 12 cm height can be made using the remaining wax.

Ans :

(a) Volume of the cone $=\frac{1}{3} \pi \times(6)^{2} \times 12$

$$
=144 \pi \text { cubic centimetre }
$$

(b) Volume of the cylinder $=\pi r^{2} h=144 \pi \times 3$

$$
=432 \pi \text { cubic centimetre }
$$

Volume of the remaining wax $=288 \pi$ cubic centimetre

$$
\begin{aligned}
\text { Volume of one candle } & =\pi \times 1^{2} \times 12 \\
& =12 \pi \text { cubic centimetres } \\
\text { Number of candles } & =\frac{288 \pi}{12 \pi}=24
\end{aligned}
$$

25. A cubical block of side 7 cm is surmounted by a hemisphere. What is the greatest diameter the hemisphere can have ? Find the surface area of the solid.
Ans :
Diameter of hemisphere $=$ Side of cubical block
or,

$$
\begin{aligned}
2 r & =7 \\
r & =\frac{7}{2}
\end{aligned}
$$

Surface area of solid
$=$ Surface area of the cube

- Area of base of hemisphere
+ curved surface area of hemisphere

$$
\begin{aligned}
& =6 l^{2}-\pi r^{2}+2 \pi r^{2} \\
& =6 \times 49-11 \times \frac{7}{2}+77=332.5 \mathrm{~cm}^{2}
\end{aligned}
$$

A metallic solid sphere of radius 4.2 cm is melted and recast into the shape of a solid cylinder of radius 6 cm . Find the height of the cylinder.
Ans :
Volume of sphere $=$ Volume of cylinder

$$
\begin{aligned}
\frac{4}{3} \pi R^{3} & =\pi r^{2} h \\
\frac{4}{3} \times(4.2)^{3} & =6^{2} \times h \\
h & =\frac{4 \times 4.2 \times 4.2 \times 4.2}{3 \times 6 \times 6}
\end{aligned}
$$

Hence, height of cylinder $h=2.744 \mathrm{~cm}$.
26. There are two covers A and B each containing paper slips with natural numbers from 1 to 7 written on them. One slip is drawn from each cover. Using them, a two digit number is formed with a number from A in the units place and the number from B in the tens place. How many such two digit numbers can be formed? What is the probability that a two digit number so formed is even?
Ans :
Number of slips in cover $A=7$
Number of slips in cover $B=7$
Numbers formed with a number from cover A in the units place and a number from cover B in the tens place are as follows:

11	12	13	14	15	16	17
31	22	23	24	25	26	27
31	32	33	34	35	36	37
41	42	43	45	45	46	47
51	52	53	54	55	56	57
61	62	63	64	65	66	67
71	72	73	74	75	76	77

Thus, total number of two digit numbers

$$
=7 \times 7=49
$$

Number of two digit even numbers

$$
=7 \times 3=21
$$

P (two digit number so formed is even)

$$
=\frac{21}{49}=\frac{3}{7}
$$

Section C

27. If the sum and product of the zeroes of the polynomial $a x^{2}-5 x+c$ are equal to 10 each, find the value of ' a ' and ' c '.
Ans :
We have

$$
f(x)=a x^{2}-5 x+c
$$

Let the zeroes of $f(x)$ be α and β, then,
Sum of zeroes

$$
\alpha+\beta=-\frac{-5}{a}=\frac{5}{a}
$$

Product of zeroes

$$
\alpha \beta=\frac{c}{a}
$$

According to question, the sum and product of the zeroes of the polynomial $f(x)$ are equal to 10 each.

Thus $\quad \frac{5}{a}=10$
and $\quad \frac{c}{a}=10$
Dividing (2) by eq. (1) we have

$$
\frac{c}{5}=1 \Rightarrow c=5
$$

Substituting $c=5$ in (2) we get $a=\frac{1}{2}$
Hence $a=\frac{1}{2}$ and $c=5$.

or

If α and β are the zeroes of a quadratic polynomial such that $\alpha+\beta=0$ and $\alpha-\beta=8$. Find the quadratic polynomial having α and β as its zeroes.
Ans :
We have

$$
\begin{align*}
& \alpha+\beta=24 \tag{1}\\
& \alpha-\beta=8 \tag{2}
\end{align*}
$$

Adding equations (1) and (2) we have

$$
2 \alpha=32 \Rightarrow \alpha=16
$$

Subtracting (1) from (2) we have

$$
2 \beta=24 \Rightarrow \beta=12
$$

Hence, the quadratic polynomial

$$
\begin{aligned}
p(x) & =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-(16+8) x+(16)(8) \\
& =x^{2}-24 x+128
\end{aligned}
$$

28. Determine an A.P. whose third term is 9 and when fifth t
Ans :
Let the first term be a, common difference be d and nth term be a_{n}.
We have $\quad a_{3}=9$

$$
\begin{equation*}
a+2 d=9 \tag{1}
\end{equation*}
$$

and $\quad a_{8}-a_{5}=6$

$$
\begin{aligned}
(a+7 d)-(a+4 d) & =6 \\
3 d & =6 \\
d & =2
\end{aligned}
$$

Substituting this value of d in equation (1), we get

$$
\begin{aligned}
a+2(2) & =9 \\
a & =5
\end{aligned}
$$

So, A.P. is $5,7,9,11, \ldots$
29. Find the co-ordinate of a point P on the line segment joining $A(1,2)$ and $B(6,7)$ such that $A P=\frac{2}{5} A B \quad[3]$
Ans :
As per question, line diagram is shown below.

We have

$$
A P=\frac{2}{5} A B \Rightarrow A P: P B=2: 3
$$

By using section formula,

$$
x=\frac{m x_{2}+n x_{1}}{m+n} \text { and } y=\frac{m y_{2}+n x_{1}}{m+n}
$$

Applying section formula we get
and $\quad y=\frac{2 \times 7+3 \times 2}{2+3}=\frac{14+6}{5}=4$
Thus

$$
P(x, y)=(3,4)
$$

or
Find the ratio in which the line segment joining the points $A(3,-3)$ and $B(-2,7)$ is divided by x-axis. Also find the co-ordinates of point of division.
Ans :
y co-ordinate of any point on the x will be zero. Let $(x, 0)$ be point on x axis which cut the line. As per question, line diagram is shown below.

Let the ratio be $k: 1$.
Using section formula for y co-ordinate we have

$$
\begin{aligned}
& 0=\frac{1(-3)+k(7)}{1+k} \\
& k=\frac{3}{7}
\end{aligned}
$$

Using section formula for x co-ordinate we have

$$
x=\frac{1(3)+k(-2)}{1+k}=\frac{3-2 \times \frac{3}{7}}{1+\frac{3}{7}}=\frac{3}{2}
$$

Thus co-ordinates of point are $\left(\frac{3}{2}, 0\right)$.
30. $A B C$ is a triangle. A circle touches sides $A B$ and $A C$ produced and side $B C$ at $B C$ at X, X, Y and Z respectively. Show that $A X=\frac{1}{2}$ perimeter of $\triangle A B C$. [3]

Ans :

As per question we draw figure shown below.

Since length of tangents from an external point to a circle are equal,
At A,
$A X=A Y$
At B
$B X=B Z \mathrm{~cm}$
At C
$C Y=C Z$

Perimeter of $\triangle A B C$,

$$
\begin{aligned}
p & =A B+A C+B C \\
& =(A X-B X)+(A Y-C Y)+(B Z+Z C) \\
& =A X+A Y-B X+B Z+Z C-C Y
\end{aligned}
$$

From eq. (1), (2) and (3), we get

$$
=A X+A Y=2 A X
$$

Thus

$$
A X=\frac{1}{2} p
$$

Hence Proved
31. One sees the top of a tree on the bank of a river at
an elevation of 70° from the other bank. Stepping 20 metres back, he sees the top of the tree at an elevation of 55°. Height of the person is 1.4 metres.
(a) Draw a rough figure and mark the measurements.
(b) Find the height of the tree.
(c) Find the width of the river.
$\left[\tan 70^{\circ}=2.75 ; \tan 55^{\circ}=1.43\right]$

Ans :

(a)

(b) In $\triangle A B C$,

$$
\begin{aligned}
\tan 70^{\circ} & =\frac{A B}{x} \\
A B & =x \tan 70^{\circ}
\end{aligned}
$$

(c)

In $\triangle A B D, \tan 55^{\circ}=\frac{A B}{x+20}$

$$
\begin{aligned}
A B & =(x+20) \tan 55^{\circ} \\
x \tan 70^{\circ} & =(x+20) \tan 55^{\circ} \\
x \tan 70^{\circ} & =x \tan 55^{\circ}+20 \tan 55^{\circ} \\
x\left(\tan 70^{\circ}-\tan 55^{\circ}\right) & =20 \tan 55^{\circ} \\
x & =\frac{20 \times \tan 55^{\circ}}{\tan 75^{\circ}-\tan 55^{\circ}} \\
& =\frac{20 \times 1.43}{2.75-1.43}=\frac{28.6}{1.32} \\
& =21.67 \\
A B & =x \tan 70=21.67 \times 2.75 \\
& =59.59 \mathrm{~m} \\
\text { Height of the tree } & =59.59+1.4 \\
& =60.99 \mathrm{~m} \\
\text { Width of the river } & =21.67 \mathrm{~m}
\end{aligned}
$$

32. In the given figure, $A O B$ is a sector of angle 60° of a circle with centre O and radius 17 cm . If $A P \perp O B$ and $A P=15 \mathrm{~cm}$, find the area of the shaded region.

Ans :

Here $O A=17 \mathrm{~cm}, A P=15 \mathrm{~cm}$ and $\triangle O P A$ is right triangle
Using Pythagoras theorem, we have

$$
O P=\sqrt{17^{2}-15^{2}}=8 \mathrm{~cm}
$$

Area of the shaded region

$$
\begin{aligned}
= & \text { Area of the sector } \quad \triangle O A B \\
& \quad-\text { Area of } \triangle O P A \\
= & \frac{60}{360} \times \pi r^{2}-\frac{1}{2} \times b \times h \\
= & \frac{60^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 17 \times 17-\frac{1}{2} \times 8 \times 15 \\
= & 151.38-60=91.38 \mathrm{~cm}^{2}
\end{aligned}
$$

or
A memento is made as shown in the figure. Its base $P B C R$ is silver plate from the Front side. Find the area which is silver plated. Use $\pi=\frac{22}{7}$.

Ans :

From the given figure
Area of right-angled $\triangle A B C=\frac{1}{2} \times 10 \times 10=50$
Area of quadrant $A P R$ of the circle of radii 7 cm

$$
\begin{aligned}
& =\frac{1}{4} \times \pi \times(7)^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times 49=38.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of base $P B C R$

$$
\begin{aligned}
& =\text { Area of } \triangle A B C-\text { Area of quadrant } A P R \\
& =50-38.5=11.5 \mathrm{~cm}^{2}
\end{aligned}
$$

33. A 7 m long flagstaff is fixed on the top of a tower standing on the horizontal plane. From point on the ground, the angles of elevation of the top and bottom of the flagstaff are 60° and 45° respectively. Find the height of the tower correct to one place of decimal. (Use $\sqrt{3}=1.73$)

Ans :

As per given in question we have drawn figure below.

$$
\begin{aligned}
\frac{x}{y} & =\tan 45^{\circ}=1 \Rightarrow x=y \\
\frac{x+7}{x} & =\tan 60^{\circ}=\sqrt{3} \\
7 & =(\sqrt{3}-1) x \\
x & =\frac{7(\sqrt{3}+1)}{2}=\frac{7(2.73)}{2}=9.6 \mathrm{~m}
\end{aligned}
$$

34. From the top of a tower of height 50 cm , the angles of depression of the top and bottom of a pole are 30° and 45° respectively find:
(i) How far the pole is from the bottom of a tower?
(ii) The height of the pole (Use $\sqrt{3}=1.732$)

Ans :
Here, $\quad A B=50 \mathrm{~m}$

$$
\begin{aligned}
& \angle A D B=45^{\circ} \\
& \angle A C M=30^{\circ}
\end{aligned}
$$

(i) In right $\triangle A B D$,

Distance of pole from bottom of water $=50 \mathrm{~m}$
(ii) In right $\triangle A M C$,

$$
\begin{aligned}
A M & =M C \tan 30^{\circ}=\frac{50}{\sqrt{3}} \\
\text { Height of pole } & =C D=B M=A B-A M \\
& =50-\frac{50}{\sqrt{3}}=50-\frac{50}{1.732} \\
& =50-28.87=21.13 \mathrm{~m}
\end{aligned}
$$

Section D

35. Solve for x and y :

$$
\begin{array}{r}
2 x-y+3=0 \\
3 x-5 y+1=0
\end{array}
$$

Ans :
We have $2 x-y+3=0$

$$
\begin{equation*}
3 x-5 y+1=0 \tag{1}
\end{equation*}
$$

Multiplying equation (1) by 5 , and subtracting (2) from it we have

$$
\begin{aligned}
7 x & =-14 \\
x & =\frac{-14}{7}=-2
\end{aligned}
$$

Substituting the value of x in equation (1), we get

$$
\begin{aligned}
2 x-y+3 & =0 \\
2(-2)-y+3 & =0 \\
-4-y+3 & =0 \\
-y-1 & =0 \\
y & =-1
\end{aligned}
$$

Hence, $x=-2$ and $y=-1$.
or
A two digit number is obtained by either multiplying the sum of digits by 8 and then subtracting 5 or by multiplying the difference of digits by 16 and adding 3 . Find the number.

Ans :

Let the digits of number be x and y, then number will $10 x+y$
According to the question, we have
also

$$
\begin{align*}
8(x+y)-5 & =10 x+y \\
2 x-7 y+5 & =0 \tag{1}
\end{align*}
$$

$$
\begin{align*}
16(x-y)+3 & =10 x+y \\
6 x-17 y+3 & =0 \tag{2}
\end{align*}
$$

Comparing the equation with $a x+b y+c=0$ we get

$$
\begin{aligned}
a_{1}=2, b_{1} & =-1, c_{1}=5 \\
a_{2}=6, b_{2} & =-17, c_{2}=3 \\
\text { Now } \quad \frac{x}{b_{2} c_{1}-b_{1} c_{2}} & =\frac{y}{c_{1} a_{2}-c_{2} a_{1}}=\frac{1}{c_{1} b_{2}-a_{2} b_{1}} \\
\frac{x}{(-7)(3)-(-17)(5)} & =\frac{y}{(5)(6)-(2)(3)} \\
& =\frac{1}{(2)(-17)-(6)(-7)} \\
\frac{x}{-21+85} & =\frac{y}{30-6}=\frac{1}{-34+42} \\
\frac{x}{64} & =\frac{y}{24}=\frac{1}{8} \\
\text { Hence, } & \frac{x}{8}
\end{aligned}=\frac{y}{3}=18
$$

So, required number $=10 \times 8+3=83$.
36. Find the HCF of 256 and 36 using Euclid's Division Algorithm. Also, find their LCM and verify that HCF $\times \mathrm{LCM}=$ Product of the two numbers.
Ans :
By using Euclid's Division Lemma, we have

$$
\begin{aligned}
256 & =36 \times 7+4 \\
36 & =4 \times 9+0
\end{aligned}
$$

Hence, the HCF of 256 and 36 is 4 .

$$
\text { LCM : } \begin{aligned}
256 & =2^{8} \\
36 & =2^{2} \times 3^{2} \\
\mathrm{LCM}(36,256) & =2^{8} \times 3^{2}=256 \times 9=2304 \\
\mathrm{HCF} \times \mathrm{LCM} & =\text { Product of the two number } \\
4 \times 2,304 & =256 \times 36 \\
9216 & =9,216 \quad \text { Hence verified. }
\end{aligned}
$$

37. The denominator of a fraction is two more than its numerator. If the sum of the fraction and its reciprocal
is $\frac{34}{15}$, find the fraction.

Ans:

Let numerator be x, then denominator will be $x+2$.
and

$$
\text { fraction }=\frac{x}{x+2}
$$

Now

$$
\begin{aligned}
\frac{x}{x+2}+\frac{x+2}{x} & =\frac{34}{15} \\
15\left(x^{2}+x^{2}+4 x+4\right) & =34\left(x^{2}+2 x\right) \\
30 x^{2}+60 x+60 & =34 x^{2}+68 x \\
4 x^{2}+8 x-60 & =0 \\
x^{2}+2 x-15 & =0 \\
x^{2}+5 x-3 x-15 & =0 \\
x(x+5)-3(x+5) & =0 \\
(x+5)(x-3) & =0
\end{aligned}
$$

We reject the $x=-5$. Thus $x=3$ and fraction $=\frac{3}{5}$
or
A motor boat whose speed is $24 \mathrm{~km} / \mathrm{h}$ in still water takes 1 hour more to go 32 km upstream than to return downstream to the same spot. Find the speed of the stream.

Ans :

Let the speed of stream be $x \mathrm{~km} / \mathrm{h}$
Then the speed of boat upstream $=(24-x) \mathrm{km} / \mathrm{h}$ Speed of boat downstream $=(24+x) \mathrm{km} / \mathrm{h}$
According to the question,

$$
\begin{aligned}
\frac{32}{24-x}-\frac{32}{24+x} & =1 \\
32\left[\frac{1}{24-x}-\frac{1}{24+x}\right] & =1 \\
32\left[\frac{24+x-24+x}{576-x^{2}}\right] & =1 \\
32(24+x-24+x) & =576-x^{2} \\
64 x & =576-x^{2} \\
x^{2}+64 x-576 & =0 \\
x^{2}+72 x-8 x-576 & =0 \\
x(x+72)-8(x+72) & =0 \\
(x-8)(x+72) & =0 \\
x & =8,-72
\end{aligned}
$$

Since speed cannot be negative, we reject $x=-72$.
The speed of steam is $8 \mathrm{~km} / \mathrm{h}$.
38. $A B C D$ is a rhombus whose diagonal $A C$ makes an angle α with $A B$. If $\cos \alpha=\frac{2}{3}$ and $O B=3 \mathrm{~cm}$, find the length of its diagonals $A C$ and $B D$.

Ans :

We have $\quad \cos \alpha=\frac{2}{3}$ and $O B=3 \mathrm{~cm}$
In $\triangle A O B, \quad \cos \alpha=\frac{2}{3}=\frac{A O}{A B}$
Let $O A=2 x$ then $A B=3 x$
Now in right angled triangle $\triangle A O B$ we have

$$
\begin{aligned}
A B^{2} & =A O^{2}+O B^{2} \\
(3 x)^{2} & =(2 x)^{2}+(3)^{2} \\
9 x^{2} & =4 x^{2}+9 \\
5 x^{2} & =9 \\
x & =\sqrt{\frac{9}{5}}=\frac{3}{\sqrt{5}}
\end{aligned}
$$

Hence,

$$
O A=2 x=2\left(\frac{3}{\sqrt{5}}\right)=\frac{6}{\sqrt{5}} \mathrm{~cm}
$$

and

$$
A B=3 x=3\left(\frac{3}{\sqrt{5}}\right)=\frac{9}{\sqrt{5}} \mathrm{~cm}
$$

Diagonal $\quad B D=2 \times O B=2 \times 3=6 \mathrm{~cm}$
and

$$
\begin{aligned}
A C= & 2 A O \\
= & 2 \times \frac{6}{\sqrt{5}}=\frac{12}{\sqrt{5}} \mathrm{~cm} \\
& \text { or }
\end{aligned}
$$

Vertical angles of two isosceles triangles are equal. If their areas are in the ratio $16: 25$, then find the ratio of their altitudes drawn from vertex to the opposite side.
Ans:
As per given condition we have drawn the figure below.

Here

$$
\begin{aligned}
& \angle A=\angle P \\
& \angle B=\angle C, \angle Q=\angle R
\end{aligned}
$$

Let $\angle A=\angle P$ be x.
In $\triangle A B C, \angle A+\angle B+\angle C=180^{\circ}$

$$
\begin{align*}
& x^{2}+\angle B+\angle B=180^{\circ} \quad(\angle B=\angle C) \\
& 2 \angle B=180^{\circ}-x \\
& \quad \angle B=\frac{180^{\circ}-x}{2}
\end{align*}
$$

Now, in $\triangle P Q R$

$$
\begin{align*}
\angle P+\angle Q+\angle R & =180^{\circ} \quad(\angle Q=\angle R) \\
x^{2}+\angle Q+\angle Q & =180^{\circ} \\
2 \angle Q & =180^{\circ}-x \\
\angle Q & =\frac{180^{\circ}-x}{2}
\end{align*}
$$

In $\triangle A B C$ and $\triangle P Q R$,

$$
\begin{aligned}
& \angle A=\angle P \\
& \angle B=\angle Q
\end{aligned}
$$

[From eq. (1) and (2)]

Due to $A A$ similarity,

$$
\text { Now } \begin{aligned}
\Delta A B C & \sim \triangle P Q R \\
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)} & =\frac{A D^{2}}{P E^{2}} \\
\frac{16}{25} & =\frac{A D^{2}}{P E^{2}} \\
\frac{4}{5} & =\frac{A D}{P E} \\
\frac{A D}{P E} & =\frac{4}{5}
\end{aligned}
$$

39. In an acute angled triangle $A B C$, if $\sin (A+B-C)=\frac{1}{2}$ and $\cos (B+C-A)=\frac{1}{\sqrt{2}}$, find $\angle A, \angle B$ and $\angle C .[4]$ Ans :

We have

$$
\begin{equation*}
\sin (A+B-C)=\frac{1}{2}=\sin 30^{\circ} \tag{1}
\end{equation*}
$$

or,
or,

$$
\begin{equation*}
B+C-A=45^{\circ} \tag{2}
\end{equation*}
$$

Adding equation (1) and (2), we get

$$
2 B=75^{\circ}
$$

or, $\quad B=37.5^{\circ}$
Now subtracting equation (2) from equation (1) we get,

$$
\begin{align*}
2(A-C) & =-15^{\circ} \\
\text { or, } \quad A-C & =7.5^{\circ} \tag{3}\\
\text { Now } \quad A+B+C & =180^{\circ} \\
A+B+C & =180^{\circ} \\
A+C & =180^{\circ}-37.5^{\circ}=142.5^{\circ} \tag{4}
\end{align*}
$$

Adding equation (3) and (4), we have

$$
2 A=135^{\circ}
$$

or, $\quad A=67.5^{\circ}$
and,

$$
C=75^{\circ}
$$

Hence, $\angle A=67.5^{\circ}, \angle B=37.5^{\circ}, \angle C=75^{\circ}$
40. Find the median of the following data :

Class	$0-$	$20-$	$40-$	$60-$	$80-$	$100-$				
Interval	20	40	60	80	$120-$					
100	120						$	$	140	
:---	:---									
Frequency	6									

How can we find the median graphically?
Ans :
(i)

Classes	c.f.
More than 0	50
More than 20	44
More than 40	36
More than 60	26
More than 80	14
More than 100	8
More than 120	3

To draw on ogive we take the indeces : $(0,50),(20,44)$,
$(40,36),(60,26),(80,14),(100,8),(120,3)$

From graph, $\quad \frac{N}{2}=\frac{50}{2}=25$

$$
\therefore \quad \text { Median }=61.6
$$

(ii) By Formula Method :

Classes	f	c.f.	
$0-20$	6	6	
$20-40$	8	14	
$40-60$	10	24	
$60-80$	12	36	Median Class
$80-100$	6	42	
$100-120$	5	47	
$120-140$	3	50	
Median $=\frac{N}{2}$ th term			
$=\frac{50}{2}=25$ th term			

$\therefore \quad$ Median class $=60-80$

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-c . f .}{f}\right) \times h \\
& =60+\frac{1}{12} \times 20 \\
& =60+\frac{5}{3} \\
& =\frac{185}{3} \\
& =61.67
\end{aligned}
$$

www.cbse.online

Download unsolved version of this paper from
 www.cbse.online

This sample paper has been released by website www.cbse.online for the benefits of the students. This paper has been prepared by subject expert with the consultation of many other expert and paper is fully based on the exam pattern for 2019-2020. Please note that website www.cbse.online is not affiliated to Central board of Secondary Education, Delhi in any manner. The aim of website is to provide free study material to the students.

