CLASS X (2019-20)
 MATHEMATICS STANDARD(041)
 SAMPLE PAPER-5

Time : 3 Hours
Maximum Marks : 80
General Instructions :
(i) All questions are compulsory.
(ii) The questions paper consists of 40 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .
(iii) Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 8 questions of 3 marks each. Section D comprises of 6 questions of 4 marks each.
(iv) There is no overall choice. However, an internal choices have been provided in two questions of 1 mark each, two questions of 2 marks each, three questions of 3 marks each, and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
(v) Use of calculators is not permitted.

Section A

Q.1-Q. 10 are multiple choice questions. Select the most appropriate answer from the given options.

1. Two positive numbers have their HCF as 12 and their product as 6336 . The number of pairs possible for the numbers, is
(a) 2
(b) 3
(c) 4
(d) 5

Ans: (a) 2
Let the numbers be $12 x$ and $12 y$ where x and y are co-primes.

Product of these numbers $=144 x y$
Hence, $\quad 144 x y=6336 \Rightarrow x y=44$
Since, 44 can be written as the product of two factors in three ways. i.e. $1 \times 44,2 \times 22,4 \times 11$. As x and y are co-prime, so (x, y) can be $(1,44)$ or $(4,11)$ but not $(2,22)$.
Hence, two possible pairs exist.
2. If α and β are zeroes and the quadratic polynomial $f(x)=x^{2}-x-4$, then the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta$ is [1]
(a) $\frac{15}{4}$
(b) $\frac{-15}{4}$
(c) 4
(d) 15

Ans: (a) $\frac{15}{4}$
Given that, $\quad f(x)=x^{2}-x-4$

$$
\alpha+\beta=1 \text { and } \alpha \beta=-4
$$

We have, $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha \beta=\frac{\alpha+\beta}{\alpha \beta}-\alpha \beta=-\frac{1}{4}+4=\frac{15}{4}$
3. The 2 digit number which becomes $(5 / 6)$ th of itself when its digits are reversed. The difference in the digits of the number being 1, then the two digits number is
(a) 45
(b) 54
(c) 36
(d) None of these

Ans: (b) 54
If the two digits are x and y, then the number is $10 x+y$.

Now

$$
\frac{5}{6}(10 x+y)=10 y+x
$$

Solving, we get $44 x=55 y$

$$
\begin{equation*}
\frac{x}{y}=\frac{5}{4} \tag{1}
\end{equation*}
$$

Also $x-y=1$. Solving them, we get $x=5$ and $y=4$
. Therefore, number is 54 .
4. If one root of the quadratic equation $a x^{2}+b x+c=0$ is the reciprocal of the other, then
[1]
(a) $b=c$
(b) $a=b$
(c) $a c=1$
(d) $a=c$

Ans : (d) $a=c$
If one root is α, then the other $\frac{1}{\alpha}$.

$$
\begin{aligned}
\alpha \cdot \frac{1}{\alpha} & =\text { product of roots }=\frac{c}{a} \\
1 & =\frac{c}{a} \\
a & =c
\end{aligned}
$$

5. If the common difference of an $A P$ is 5 , then what is $a_{18}-a_{13}$?
(a) 5
(b) 20
(c) 25
(d) 30

Ans: (c) 25
Given, the common difference of $A P$ i.e., $d=5$
Now,

$$
\begin{align*}
a_{18}-a_{13}= & a+(18-1) d-[a+(13-1) d] \\
& \quad\left[\text { Since }, a_{n}=a+(n-1) d\right] \\
= & a+17 \times 5-a-12 \times 5 \\
= & 85-60=25 \tag{1}
\end{align*}
$$

6. If $f(x)=\cos ^{2} x+\sec ^{2} x$, then $f(x)$
(a) ≥ 1
(b) ≤ 1
(c) ≥ 2
(d) ≤ 2

Ans: $(\mathrm{c}) \geq 2$
Given, $f(x)=\cos ^{2} x+\sec ^{2} x$

$$
=\cos ^{2} x+\sec ^{2} x-2+2
$$

[adding and subtracting 2]

$$
=\cos ^{2} x+\sec ^{2} x-2 \cos x \cdot \sec x+2
$$

$[\cos x \cdot \sec x=1]$

$$
\begin{aligned}
&=(\cos x-\sec x)^{2}+2 \\
& \quad\left[a^{2}+b^{2}-2 a b=(a-b)^{2}\right]
\end{aligned}
$$

We know that, square of any expression is always greater than equal to zero.

$$
f(x) \geq 2
$$

Hence proved.
7. A sector is cut from a circular sheet of radius 100 cm , the angle of the sector being 240°. If another circle of the area same as the sector is formed, then radius of the new circle is
(a) 79.5 cm
(b) 81.5 cm
(c) 83.4 cm
(d) 88.5 cm

Ans : (b) 81.5 cm

$$
\begin{aligned}
\text { Area of sector } & =240 / 360 \times \pi(100)^{2} \\
& =20933 \mathrm{~cm}^{2}
\end{aligned}
$$

Let r be the radius of the new circle, then

$$
\begin{aligned}
20933 & =\pi r^{2} \\
r & =\sqrt{\frac{20933}{\pi}}=81.6 \mathrm{~cm}
\end{aligned}
$$

8. A slab of ice 8 inches in length, 11 inches in breadth, and 2 inches thick was melted and re-solidified in the form of a rod of 8 inches diameter. The length of such a rod, in inches, is nearest to
(a) 3
(b) 3.5
(c) 4
(d) 4.5

Ans: (b) 3.5

$$
\begin{aligned}
\text { Volume of the given ice cuboid } & =8 \times 11 \times 2 \\
& =176
\end{aligned}
$$

Let the length of the required rod be l.

$$
\begin{aligned}
\pi l \frac{8^{2}}{4} & =176 \\
l & =3.5 \text { inches }
\end{aligned}
$$

9. If the difference of mode and median of a data is 24 , then the difference of median and mean is
(a) 12
(b) 24
(c) 08
(d) 36

Ans: (a) 12
We have,

$$
\text { Mode }- \text { Median }=24
$$

We know that, Mode $=3$ (Median) -2 Mean
Mode - Median $=2$ Median -2 Mean

$$
24=2(\text { Median }- \text { Mean })
$$

Median - Mean $=12$
10. A bag contains 3 red and 2 blue marbles. If a marble is drawn at random, then the probability of drawing a blue marble is:
(a) $\frac{1}{5}$
(b) $\frac{2}{5}$
(c) $\frac{3}{5}$
(d) $\frac{4}{5}$

Ans: (b) $\frac{2}{5}$
There 5 marbles in the bag. Out of these 5 marbles one can be choose in 5 ways.
Hence, Total number of possible outcomes $=5$
Since, the bag contains 2 blue marbles. Therefore, one blue marble can be drawn in 2 ways.

Hence, Favourable number of elementary events $=2$
Hence, $\quad \mathrm{P}\left(\right.$ getting a blue marble) $=\frac{2}{5}$

(Q.11-Q.15) Fill in the blanks.

11. If $a=b q+r$, least value of r is \qquad
Ans: Zero
12. Area of a rhombus if its vertices are $(3,0),(4,5)$, $(-1,4)$ and $(-2,-1)$ taken in order is \qquad [1]
Ans: 24. Sq. units

or

Points $(3,2),(-2,-3)$ and $(2,3)$ form a \qquad triangle.
Ans : Right angle
13. In $\triangle A B C$, right-angled at $B, A B=24 \mathrm{~cm}, B C=7 \mathrm{~cm}$. $\sin A=$ \qquad
Ans : 7/25
14. Length of an arc of a sector of a circle with radius r and angle with degree measure θ is \qquad
Ans : $\frac{\theta}{360} \times 2 \pi r$
15. The volume of a cube with diagonal d is \qquad
Ans: $\frac{d^{3}}{3 \sqrt{3}}$ cu units.
(Q.16-Q.20) Answer the following
16. In given figure $D E \| B C$. If $A D=3 \mathrm{~cm}, D B=4 \mathrm{~cm}$ and $A E=6 \mathrm{~cm}$, then find $E C$.

Ans :
In the given figure $D E \| B C$, thus

$$
\begin{aligned}
\frac{A D}{A B} & =\frac{A E}{E C} \\
\frac{3}{4} & =\frac{6}{E C} \\
E C & =8 \mathrm{~cm}
\end{aligned}
$$

17. In the given figure, $A O B$ is a diameter of the circle with centre O and $A C$ is a tangent to the circle at A . If $\angle B O C=130^{\circ}$, the find $\angle A C O$.

Ans:

Here $O A$ is radius and $A C$ is tangent at A, since radius is always perpendicular to tangent, we have

$$
\angle O A C=90^{\circ}
$$

From exterior angle property,

$$
\begin{aligned}
\angle B O C & =O A C+\angle A C O \\
130^{\circ} & =90^{\circ}+\angle A C O \\
\angle A C O & =130^{\circ}-90^{\circ}=40^{\circ}
\end{aligned}
$$

18. A ladder 15 m long leans against a wall making an angle of 60° with the wall. Find the height of the point where the ladder touches the wall.
Ans :
Let the height of wall be h. As per given in question we have drawn figure below.

$$
\begin{aligned}
\frac{h}{15} & =\cos 60^{\circ} \\
h & =15 \times \cos 60^{\circ} \\
& =15 \times \frac{1}{2} \\
& =7.5 \mathrm{~m}
\end{aligned}
$$

or
An observer, 1.7 m tall, is $20 \sqrt{3} \mathrm{~m}$ away from a tower. The angle of elevation from the eye of observer to the top of tower is 30°. Find the height of tower.

Ans :

Let height of the tower $A B$ be h. As per given in question we have drawn figure below.

$$
\begin{aligned}
& \text { Here } \quad A E=h-1.7 \\
& \text { and } \\
& B C=D E=20 \sqrt{3} \\
& \text { In } \triangle A D E \text {, } \\
& \angle E=90^{\circ} \\
& \tan 30^{\circ}=\frac{h-1.7}{20 \sqrt{3}} \\
& \frac{1}{\sqrt{3}}=\frac{h-1.7}{20 \sqrt{3}} \\
& h-1.7=20 \\
& \text { or } \\
& h=20+1.7=21.7 \mathrm{~m}
\end{aligned}
$$

19. To divide a line segment AB in the ratio $2: 5$, a ray $A X$ is drawn such that $\angle B A X$ is acute. Then points are marked at equal intervals on $A X$. What is the minimum number of these points?
Ans :
Minimum number of points marked on, $A X=2+5=7$
20. What is the volume of a right circular cylinder of base radius 7 cm and height 10 cm ? (Use $\pi=\frac{22}{7}$)
Ans :
Here $r=7 \mathrm{~cm}, h=10 \mathrm{~cm}$,
Volume of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times(7)^{2} \times 10 \\
& =1540 \mathrm{~cm}^{3}
\end{aligned}
$$

Section B

21. For what value of k, the pair of linear equations $k x-4 y=3,6 x-12 y=9$ has an infinite number of solutions?
Ans :
We have

$$
k x-4 y-3=0
$$

and
where,

$$
6 x-12 y-9=0
$$

$$
\begin{aligned}
& a_{1}=k, b_{1}=4, c_{1}=-3 \\
& a_{2}=6, b_{2}=-12, c_{2}-9
\end{aligned}
$$

Condition for infinite solutions:

$$
\begin{aligned}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\frac{k}{6} & =\frac{-4}{-12}=\frac{3}{9}
\end{aligned}
$$

Hence,

$$
k=2
$$

22. The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from $Q(2,-5)$ and $R(-3,6)$, find the co-ordinates of P.
Ans :
Let the point $P(2 y, y)$,
Since $P Q=P R$, we have

$$
\begin{aligned}
\sqrt{(2 y-2)^{2}+(y+5)^{2}} & =\sqrt{(2 y+3)^{2}+(y-6)^{2}} \\
(2 y-2)^{2}+(y+5)^{2} & =(2 y+3)^{2}+(y-6)^{2} \\
-8 y+4+10 y+25 & =12 y+9-12 y+36 \\
2 y+29 & =45 \\
y & =8
\end{aligned}
$$

Hence, coordinates of point P are $(16,8)$
23. Find the altitude of an equilateral triangle when each of its side is ' a ' cm .
Ans :
Let $\triangle A B C$ be an equilateral triangle of side a and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

In $\triangle A B D$,

$$
\begin{aligned}
& a^{2}=\left(\frac{a}{2}\right)^{2}+h^{2} \\
& h^{2}=a^{2}-\frac{a^{2}}{4}=\frac{3 a^{2}}{4}
\end{aligned}
$$

Thus

$$
h=\frac{\sqrt{3 a}}{2}
$$

or
In an equilateral triangle of side $3 \sqrt{3} \mathrm{~cm}$ find the length of the altitude.

Ans :

Let $\triangle A B C$ be an equilateral triangle of side $3 \sqrt{3} \mathrm{~cm}$ and $A D$ is altitude which is also a perpendicular bisector of side $B C$. This is shown in figure given below.

Now

$$
\begin{aligned}
(3 \sqrt{3})^{2} & =h^{2}+\left(\frac{3 \sqrt{3}}{2}\right)^{2} \\
27 & =h^{2}+\frac{27}{4} \\
h^{2} & =27-\frac{27}{4}=\frac{81}{4} \\
h & =\frac{9}{2}=4.5 \mathrm{~cm}
\end{aligned}
$$

24. A hemisphere and a cone both have same diameter. These two metal solids are joined by putting their bases together. The height of the cone is equal to the diameter of the sphere. This solid is melted and recast into a sphere of a diameter equal to one third of the diameter of the hemisphere.
(a) If radius of the hemisphere is r, find the volume of the combined solid.
(b) Find the number of spheres.

Ans :

(a) Radius of the hemisphere $=r$

$$
\begin{aligned}
\text { Height of the cone } & =2 r \\
\text { Volume of the solid } & =\frac{1}{3} \pi r^{2} \times 2 r+\frac{2}{3} \pi r^{3} \\
& =\frac{2}{3} \pi r^{3}+\frac{2}{3} \pi r^{3}
\end{aligned}
$$

$$
=\frac{4}{3} \pi r^{3}
$$

(b) Volume of the sphere $=\frac{4}{3} \pi\left(\frac{r}{3}\right)^{3}$

$$
=\frac{4}{3} \pi \frac{r^{3}}{27}
$$

$$
\text { Number of spheres }=\frac{\frac{4}{3} \pi r^{3}}{\frac{4}{3} \pi \frac{r^{3}}{27}}=27
$$

25. A sphere of maximum volume is cut out from a solid hemisphere of radius 6 cm . Find the volume of the cut out sphere.

Ans :

$$
\begin{aligned}
& \text { Diameter of sphere }=\text { Radius of hemisphere } \\
&=6 \mathrm{~cm} \\
& \text { Radius of sphere }=3 \mathrm{~cm} \\
& \text { Volume, } \quad \begin{aligned}
V & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \times \frac{22}{7} \times 3^{3} \mathrm{~cm}^{3} \\
& =113.14 \mathrm{~cm}^{3} \\
& \text { or }
\end{aligned}
\end{aligned}
$$

A cone of height 24 cm and radius of base 6 cm is made up of clay. If we reshape it into a sphere, find the radius of sphere.

Ans :

Volume of sphere $=$ Volume of cone

$$
\begin{aligned}
\frac{4}{3} \pi r_{1}^{3} & =\frac{1}{3} \pi r_{2}^{2} h \\
\frac{4}{3} \times r_{1}^{3} & =(6)^{2} \times \frac{24}{3} \\
4 r_{1}^{3} & =36 \times 24 \\
r_{1}^{3} & =6^{3} \\
r_{1} & =6 \mathrm{~cm}
\end{aligned}
$$

Hence, radius of sphere is 6 cm .
26. Ramesh, a juice seller has set up his juice shop. He has three types of glasses of inner diameter 5 cm to serve the customers. The height of the glasses is 10 cm . (Use $\pi=3.14$) .

- A glass with a plane bottom

Type A

- A glass with hemispherical raised bottom
Type B

Type C
- A glass with conical raised bottom of height 1.5 cm .

He decided to serve the customer in A" type of glasses. Find the volume of glass of type A and which glass has the minimum capacity.
Ans:

Given,

$$
\begin{aligned}
\text { Diameter } & =5 \mathrm{~cm} \\
\text { Radius } & =2.5 \mathrm{~cm} \\
\text { Height } & =10 \mathrm{~cm}
\end{aligned}
$$

Volume of glass of type $\mathrm{A}=\pi r^{2} h$

$$
\begin{aligned}
& =3.14 \times 2.5 \times 2.5 \times 10 \\
& =196.25 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of hemisphere

$$
\begin{aligned}
& =\frac{2}{3} \pi r^{3} \\
& =\frac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5 \\
& =32.71 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of glass of type B

$$
\begin{aligned}
& =196.25-32.71 \\
& =163.54 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\text { Volume of cone }=\frac{1}{3} \pi r^{2} h
$$

$$
\begin{aligned}
& =\frac{1}{3} \times 3.14 \times 2.5 \times 2.5 \times 1.5 \\
& =3.14 \times 2.5 \times 2.5 \times 0.5 \\
& =9.81 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of glass of type C

$$
\begin{aligned}
& =196.25-9.81 \\
& =186.44 \mathrm{~cm}^{3}
\end{aligned}
$$

Hence the glass of type B has the minimum capacity.

Section C

27. Verify whether 2,3 and $\frac{1}{2}$ are the zeroes of the polynomial $p(x)=2 x^{3}-11 x^{2}+17 x-6$.
Ans:
If 2,3 and $\frac{1}{2}$ are the zeroes of the polynomial $p(x)$, then these must satisfy $p(x)=0$

$$
\begin{align*}
p(x) & =2 x^{2}-11 x^{2}+17 x-6 \tag{1}\\
p(2) & =2(2)^{3}-11(2)^{2}+17(2)-6 \\
& =16-44+34-6 \\
& =50-50
\end{align*}
$$

or
(2)
or
(3)
or

$$
p\left(\frac{1}{2}\right)=0
$$

Hence, 2,3 , and $\frac{1}{2}$ are the zeroes of $p(x)$.

or

Find the zeroes of the quadratic polynomial $5 x^{2}+8 x-4$ and verify the relationship between the zeroes and the coefficients of the polynomial.

Ans :

We have

$$
\begin{aligned}
p(x) & =5 x^{2}+8 x-4=0 \\
& =5 x^{2}+10 x-2 x-4=0 \\
& =5 x(x+2)-2(x+2)=0 \\
& =(x+2)(5 x-2)
\end{aligned}
$$

Substituting $p(x)=0$ we get zeroes as -2 and $\frac{2}{5}$.
Verification :

$$
\begin{aligned}
\text { Sum of zeroes } & =-2+\frac{2}{5}=\frac{-8}{5} \\
\text { Product of zeroes } & =(-2) \times\left(\frac{2}{5}\right)=\frac{-4}{5}
\end{aligned}
$$

Now from polynomial we have
Sum of zeroes $\quad-\frac{b}{a}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}=\frac{-8}{5}$
Product of zeroes $\frac{c}{a}=\frac{\text { Constan term }}{\text { Coefficient of } x^{2}}=-\frac{4}{5}$
28. If $7^{\text {th }}$ term of an A.P. is $\frac{1}{9}$ and $9^{\text {th }}$ term is $\frac{1}{7}$, find $63^{\text {rd }}$ term.
Ans:
Let the first term be a, common difference be d and nth term be a_{n}.

We have

$$
\begin{align*}
& a_{7}=\frac{1}{9} \Rightarrow a+6 d=\frac{1}{9} \tag{1}\\
& a_{9}=\frac{1}{7} \Rightarrow a+8 d=\frac{1}{7} \tag{2}
\end{align*}
$$

Subtracting equation (1) from (2), we get

$$
\begin{aligned}
2 d & =\frac{1}{7}-\frac{1}{9}=\frac{2}{63}=d \\
d & =\frac{1}{63}
\end{aligned}
$$

Substituting the value of d in (2) we get

$$
\begin{aligned}
a+8 \times \frac{1}{63} & =\frac{1}{7} \\
a & =\frac{1}{7}-\frac{8}{63}=\frac{9-8}{63}=\frac{1}{63} \\
a_{63} & =a+(63-1) d \\
& =\frac{1}{63}+62 \times \frac{1}{63}=\frac{1+62}{63} \\
& =\frac{63}{63}=1
\end{aligned}
$$

Thus

Hence, $a_{63}=1$
29. If the co-ordinates of points A and B are $(-2,-2)$ and $(2,-4)$ respectively, find the co-ordinates of P such that $A P=\frac{3}{7} A B$, where P lies on the line segment $A B$.
Ans :
We have
$A P=\frac{3}{7} A B \Rightarrow A P: P B=3: 4$
As per question, line diagram is shown below.

Section formula :

$$
x=\frac{m x_{2}+n x_{1}}{m+n} \text { and } y=\frac{m y_{2}+n x_{1}}{m+n}
$$

Applying section formula, we get

$$
\begin{aligned}
& x=\frac{3 \times 2+4 \times-2}{3+4}=-\frac{2}{7} \\
& y=\frac{3 \times-4+4 \times-2}{3+4}=-\frac{20}{7}
\end{aligned}
$$

Hence P is $\left(-\frac{2}{7},-\frac{20}{7}\right)$

or

If the distance of $P(x, y)$ from $A(6,2)$ and $B(-2,6)$ are equal, prove that $y=2 x$.

Ans :

We have $P(x, y), A(6,2), B(-2,6)$
Now $\quad P A=P B$

$$
P A^{2}=P B^{2}
$$

$$
(x-6)^{2}+(y-2)^{2}=(x+2)^{2}+(y-6)^{2}
$$

$$
-12 x+36-4 y+4=4 x+4-12 y+36
$$

$$
-12 x-4 y=4 x-12 y
$$

$$
12 y-4 y=4 x+12 x
$$

$$
8 y=16 x
$$

$$
y=2 x
$$

Hence Proved
30. In the figure, $P Q$ is a tangent to a circle with center O. If $\angle O A B=30^{\circ}$, find $\angle A B P$ and $\angle A O B$. [3]

Ans :

Here $O B$ is radius and $Q T$ is tangent at $B, O B \perp P Q$

$$
\angle O B P=90^{\circ}
$$

Since the tangent is perpendicular to the end point of radius,
Here $O A$ and $O B$ are radius of circle and equal. Since angles opposite to equal sides are equal,
$\angle O A B=\angle O B A=30^{\circ}$
Now $\quad \angle A O B=180^{\circ}-\left(30^{\circ}+30^{\circ}\right)$

$$
=120^{\circ}
$$

$$
\angle A B P=\angle O B P-\angle O B A
$$

$$
=90^{\circ}-30^{\circ}=60^{\circ}
$$

31. Rachel, an engineering student, was asked to make a model shaped like a cylinder with two cones attached at its two ends by using a thin aluminium sheet. The diameter of the model is 3 cm and its length is 12 cm . If each cone has a height of 2 cm .
(i) Find the volume of air contained in the model that Rachel made. (Assume the outer and inner dimensions of the model to be nearly the same).
(ii) Which mathematical concept is used in the above problem?

Ans:

(i)Here, radius of two cones and cylinder

$$
\begin{aligned}
& =\frac{3}{2} \mathrm{~cm} \\
& =1.5 \mathrm{~cm}
\end{aligned}
$$

Height of each cone $=2 \mathrm{~cm}$
Height of cylindrical portion $=12-2-2=8 \mathrm{~cm}$
Volume of the air $=$ Volumes of cylindrical part

$$
\begin{aligned}
& \quad+2 \times \text { Volume of cone } \\
& =\pi(1.5)^{2} \times 8+2 \frac{1}{3} \pi(1.5)^{2} \times 2 \\
& =\frac{22}{7} \times(1.5)^{2}\left[8+\frac{4}{3}\right] \\
& =\frac{22}{7} \times 2.25 \times \frac{28}{3} \\
& =66 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Volume (Mensuration).
32. In the given figure, a chord $A B$ of the circle with centre O and radius 10 cm , that subtends a right angle at the centre of the circle. Find the area of the minor segment $A Q B P$. Hence find the area of major segment $A \angle L B Q A$. (Use $\pi=3.14$)

Ans :
Area of sector $O A P B$,

$$
A_{1}=\frac{90}{360} \pi(10)^{2}=25 \pi \mathrm{~cm}^{2}
$$

Area of $\triangle A O B, \quad A_{2}=\frac{1}{2} \times 10 \times 10=50 \mathrm{~cm}^{2}$
Area of minor segment $A Q B P$,

$$
=(25 \pi-50) \mathrm{cm}^{2}
$$

$$
\begin{aligned}
& =25 \times 3.14-50 \\
& =78.5-50 \\
& =28.5 \mathrm{~cm}^{2} \mathrm{~cm}^{2} \\
\text { Also area of circle } & =\pi(10)^{2} \\
& =3.14 \times 100=314 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of major segment $A L B Q A=314-28.5$

$$
=285.5 \mathrm{~cm}^{2}
$$

or
Find the area of minor segment of a circle of radius 14 cm , when its centre angle is 60°. Also find the area of corresponding major segment. Use $\pi=\frac{22}{7}$.

Ans :

Here, $r=14 \mathrm{~cm}, \theta=60^{\circ}$
Area of minor segment $=\pi r^{2} \frac{\theta}{360}-\frac{1}{2} r^{2} \sin \theta$

$$
\begin{aligned}
& =\frac{22}{7} \times 14 \times 14 \times \frac{60}{360^{\circ}}-\frac{1}{2} \times 14 \times 14 \times \frac{\sqrt{3}}{2} \\
& =\left(\frac{308}{3}-49 \sqrt{3}\right)=17.9 \mathrm{~cm}^{2} \text { approx } .
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of major segment } & =\pi r^{2}-\left(\frac{308}{3}-49 \sqrt{3}\right) \\
& =\frac{1540}{3}+49 \sqrt{3}=598.10 \\
& =598 \mathrm{~cm}^{2} \text { approx. }
\end{aligned}
$$

33. An electric pole is 10 m high. A steel wire tied to top of the pole is affixed at a point on the ground to keep the pole up right. If the wire makes an angle of 45° with the horizontal through the foot of the pole, find the length of the wire. [Use $\sqrt{2}=1.414$]
Ans :
Let $O A$ be the electric pole and B be the point on the ground to fix the pole. Let $B A$ be x.
As per given in question we have drawn figure below.

In $\triangle A B O$, we have

$$
\begin{aligned}
\sin 45^{\circ} & =\frac{A O}{A B} \\
\frac{1}{\sqrt{2}} & =\frac{10}{x} \\
x & =10 \sqrt{2}=10 \times 1.414 \\
& =14.14 \mathrm{~m}
\end{aligned}
$$

Hence, the length of wire is 14.14 m
34. A man travels from home to town and back in a motor cycle. He travels to home from town at a speed which is 20 kilometer/hour more than his journey to the town from home. The average speed of his total
journey was 48 kilometre/hour.
(a) If the distance from home to town is 5 kilometre, find his total journey time.
(b) By taking the speed of his journey from home to town as x, form a second degree equations.
Ans :

(a) Given, \quad Average speed $=48 \mathrm{~km} / \mathrm{hr}$

$$
\text { Total distance }=10 \mathrm{~km}
$$

Total time $=\frac{10}{48} \mathrm{~km}$

$$
=\frac{10}{48} \times 60 \mathrm{~min}
$$

$$
=12.5 \mathrm{~min}
$$

$$
\begin{equation*}
\text { Time }=\frac{\text { Distance }}{\text { Speed }} \tag{b}
\end{equation*}
$$

Time $t_{1}($ Home to town $)=\frac{5}{x}$
Time $t_{2}($ town to home $)=\frac{5}{x+20}$

$$
\text { Total Distance }=\text { Total time }
$$

$$
\begin{aligned}
& \quad \times \text { Average speed } \\
& 10=\left(\frac{5}{x}+\frac{5}{x+20}\right) 48 \\
& 10=\frac{5(x+20+x)}{x(x+20)} \times 48 \\
& 2 x(x+20)=48(2 x+20) \\
& x^{2}+20 x=48 x+480 \\
& x^{2}-28 x-480=0
\end{aligned}
$$

Section D

35. 4 chairs and 3 tables cost Rs 2100 and 5 chairs and 2 tables cost Rs 1750 . Find the cost of none chair and one table separately.
Ans :
Let cost of 1 chair be Rs x and cost of 1 table be Rs y According to the question,

$$
\begin{align*}
& 4 x+3 y=2100 \tag{1}\\
& 5 x+2 y=1750 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 2 and equation (2) by 3 we get,

$$
\begin{align*}
8 x+6 y & =4200 \tag{3}\\
15 x+6 y & =5250 \tag{4}
\end{align*}
$$

Subtracting equation (3) from (4) we have

$$
\begin{aligned}
7 x & =1050 \\
x & =150
\end{aligned}
$$

Substituting the value of x in (1), $y=500$
Thus cost of chair and table is Rs 150, Rs 500 respectively.
or
If a bag containing red and white balls, half the number of white balls is equal to one-third the number of red balls. Thrice the total number of balls exceeds seven times the number of white balls by 6 . How many balls of each colour does the bag contain?

Ans :

Let the number of red balls be x and white balls be y. According to the question,

$$
\begin{equation*}
\frac{1}{2} y=\frac{1}{3} x \text { or } 2 x-3 y=0 \tag{1}
\end{equation*}
$$

and $\quad 3(x+y)-7 y=6$
or $\quad 3 x-4 y=6$
Multiplying equation (1) by 3 and equation (2) we have

$$
\begin{align*}
& 6 x-9 y=0 \tag{3}\\
& 6 x-8 y=12 \tag{4}
\end{align*}
$$

Subtracting equation (3) from (4) we have

$$
y=12
$$

Substituting $y=12$ in equation (1),

$$
\begin{aligned}
2 x-36 & =0 \\
x & =18
\end{aligned}
$$

Hence, number of red balls $=18$
and number of white balls $=12$
36. Find HCF and LCM of 378,180 and 420 by prime factorization method. Is $\mathrm{HCF} \times \mathrm{LCM}$ of these numbers equal to the product of the given three numbers? [4]
Ans :
Finding prime factor of given number we have,

$$
\begin{aligned}
378 & =2 \times 3^{3} \times 7 \\
180 & =2^{2} \times 3^{2} \times 5 \\
420 & =2^{2} \times 3 \times 7 \times 5 \\
\operatorname{HCF}(378,180,420) & =2 \times 3=6 \\
\operatorname{LCM}(378,180,420) & =2^{2} \times 3^{3} \times 5 \times 7 \\
& =2^{2} \times 3^{3} \times 5 \times 7=3780 \\
\mathrm{HCF} \times \mathrm{LCM} & =6 \times 3780=22680
\end{aligned}
$$

Product of given numbers

$$
\begin{aligned}
& =378 \times 180 \times 420 \\
& =28576800
\end{aligned}
$$

Hence, $\mathrm{HCF} \times \mathrm{LCM} \neq$ Product of three numbers.
37. The time taken by a person to cover 150 km was $2 \frac{1}{2}$ hours more than the time taken in the return journey. If he returned at a speed of $10 \mathrm{~km} /$ hour more than the speed while going, find the speed per hour in each direction.
Ans :
Let the speed while going be $x \mathrm{~km} / \mathrm{h}$
Speed while returning $=(x+10) \mathrm{km} / \mathrm{h}$
According to question we have

$$
\begin{array}{r}
\frac{150}{x}-\frac{150}{x+10}=\frac{5}{2} \\
x^{2}+10 x-600=0 \\
(x+30)(x-20)=0
\end{array}
$$

or,

$$
x=\frac{h d}{2 h+d}
$$

or
Prove that ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.

Ans :

As per given condition we have drawn the figure below. Here $\triangle A B C \sim \triangle P Q R$

We have drawn $A D \perp B C$ and $P E \perp Q R$
Since $\triangle A B C \sim \triangle P Q R$, due to corresponding sides of similar triangles

$$
\begin{align*}
& \frac{A B}{P Q} \frac{A C}{Q R}=\frac{A C}{P R} \tag{1}\\
& \angle B=\angle Q
\end{align*}
$$

In $\triangle A D B$ and $\triangle P E Q$,

$$
\begin{align*}
\angle B & =\angle Q \tag{Proved}\\
\angle A D B & =\angle P E Q \\
\triangle A D B & \sim \triangle P E Q
\end{align*}
$$

($A A$ Similarity)
Corresponding sides of similar triangle,

$$
\begin{equation*}
\frac{A D}{P E}=\frac{A B}{P Q} \tag{2}
\end{equation*}
$$

From eq. (1) and eq. (2),

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{A D}{P E} \tag{3}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)} & =\frac{\frac{1}{2} \times B C \times A D}{\frac{1}{2} \times Q R \times P E} \\
& =\left(\frac{B C}{Q R}\right) \times\left(\frac{A D}{P E}\right)=\frac{B C}{Q R} \times \frac{B C}{Q R}
\end{aligned}
$$

From equation (3) we have

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{B C^{2}}{Q R^{2}} \tag{4}
\end{equation*}
$$

From equation (3) and equation (4) we have

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\left(\frac{A B}{P Q}\right)^{2}=\left(\frac{B C}{Q R}\right)^{2}=\left(\frac{A C}{P R}\right)^{2}
$$

39. Evaluate : $\frac{\cos 65^{\circ}}{\sin 25^{\circ}}-\frac{\tan 20^{\circ}}{\cot 70^{\circ}}-\sin 90^{\circ}+\tan 5^{\circ} \tan 35^{\circ}$ $\tan 60^{\circ} \tan 55^{\circ} \tan 85^{\circ}$.
Ans :
We have

$$
\frac{\cos 65^{\circ}}{\sin 25^{\circ}}=\frac{\cos 65^{\circ}}{\sin \left(90^{\circ}-65^{\circ}\right)}=\frac{\cos 65^{\circ}}{\cos 65^{\circ}}=1
$$

$$
\frac{\tan 20^{\circ}}{\cot 70^{\circ}}=\frac{\tan \left(90^{\circ}-70^{\circ}\right)}{\cot 70^{\circ}}=\frac{\cot 70^{\circ}}{\cot 70^{\circ}}=1
$$

and

$$
\sin 90^{\circ}=1
$$

$\tan 5^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 55^{\circ} \tan 85^{\circ}$

$$
=\tan \left(90^{\circ}-85^{\circ}\right) \tan \left(90^{\circ}-55^{\circ}\right)
$$

$$
=\cot 85^{\circ} \tan 85^{\circ} \cot 55^{\circ} \tan 55^{\circ} \cdot \sqrt{3}
$$

$$
=1 \times 1 \times \sqrt{3}=\sqrt{3}
$$

Now given expression $=1-1-1+\sqrt{3}=\sqrt{3}-1$
40. The median of the following data is 525 . Find the values of x and y if the total frequency is 100 . [4]

Class Interval	Frequency
$0-100$	2
$100-200$	5
$200-300$	x
$300-400$	12
$400-500$	17
$500-600$	20
$600-700$	y
$700-800$	9
$800-900$	7
$900-1000$	4
	$N=100$

Ans :

Class Interval	Frequency	Cumulative frequency
$0-100$	2	2
$100-200$	5	7
$200-300$	x	$7+x$
$300-400$	12	$19+x$
$400-500$	17	$36+x$
$500-600$	20	$56+x$
$600-700$	y	$56+x+y$
$700-800$	9	$65+x+y$
$800-900$	7	$72+x+y$
$900-1000$	4	$76+x+y$
	$N=100$	

Here, $\quad 76+x+y=100$
$\Rightarrow \quad x+y=100-76=24$
Given, Median $=525$, which lies between class 500-600
$\Rightarrow \quad$ Median class $=500-600$

$$
\begin{array}{ll}
\text { Now, } & \text { Median }=l+\frac{\frac{n}{2}-c . f .}{f} \times h \\
\Rightarrow & 525=500+\left[\frac{\frac{100}{2}-(36+x)}{20}\right] \times 100 \\
\Rightarrow & 25=(50-36-x)^{5} \\
\Rightarrow & (14-x)=\frac{25}{5}=5 \\
\Rightarrow & x=14-5=9
\end{array}
$$

Substituting the value of x in equation (i),

$$
y=24-9=15
$$

Hence,

